想象作文1000字,想象作文1000字在一个美丽的

  • 大象
  • 2024-12-18

本文为“2022年第四届数学文化征文活动

数学的魅力——自由想象

作品编号:098

说到数学魅力,想象作文1000字在一个美丽的,就自然想起罗声雄著的《数学的魅力》一书!彭翕成老师说,如果高中时就读到这本书,那一定会很早就对数学产生兴趣!会很早就爱上数学!的确如此,在看了此书的第一部分“几何学中的经典音乐”时,就让马上体验到了是数学的魅力——自由想象!

在小学时就有过这种魅力的体验——从面积到体积的想象。

人教版六年级上册在“圆”这一单元里有这样的练习:周长相等的长方形、正方形和圆,谁的面积最大?从长方形到正方形,从正方形到正多边形,从正多边形到圆,这个特殊化的进阶过程,不正是验证了方形到圆形的变化过程中,周长不变面积增加到最大的过程!这种想象自然就会顿悟到生活中的树干是圆的、水管是圆的…似乎就在诠释着自然选择的魅力和人类想象的智慧。通过大胆猜测小心验证不仅会发现圆的面积最大,还可以顺其继续想象!如果方形拓展到方体,那圆就拓展为球,这样在表面积相等即材料一定的情况下,体积或容积最大的容器是不是应该是球状!就答案还未经小心求证,这种大胆猜测得到结论的魅力就已经让人兴奋不已!如果说从二维的面想到三维的体的想象这么有趣,那我们从三维的体到二维的面展开想象也会很有意思的!例如,五年级的长方体和正方体单元的拓展材料中探索到凸多面体的点线面有欧拉公式:顶点数+面数-棱数=2(定值),例如,长方体顶点数8+面数6-棱数12=2。如果我们继续想象,将点线面置于二维的平面上来研究,他们之间是否还具备这样的规律呢?做一个展开图的想象,把简单的多面体去掉一个面形成网状在摊平,就是平面上一般的封闭图形,所有不交的区域都是多边形,那确实存在类似这样的关系:顶点数+区域数-边数=1。如果再进一步从益智操作游戏来展开想象也会有很巧的发现:把七巧板的每个板块看成一个多边形区域,进行拼合游戏,要求拼板与拼板无任何重叠,即面与面不重合(无交并),对应“可加性”。因为七巧板满足保积变形,想象作文900字初中,只允许边与边交并,或者顶点与顶点交并。那七巧板的操作就从连通到分割,从拼合到连通,欧拉示性数不变。这不正好是用欧拉-笛卡尔公式来计算欧拉示性数,正好揭示了图形的拓扑不变量! 数学的魅力就体现在这样不尽的自由想象中!她不仅给我们带了乐趣!也带来了进一步展开想象的冲动,到了中学这种自由想象的魅力更是个无穷的空间!

大家熟悉的毕氏定理就是一个充满无限想象的定理,无限魅力的定理。有了它,让我们回忆起了两点间线段最短、无理数;想到了点到线距离、点到点的距离表达式是。有了它,从维度上去想象,在三维空间中,用毕达哥拉斯定理的距离表达式是;在四维的欧几里得空间中,用毕达哥拉斯定理的距离表达式,初一想象作文1000字。

有一个周末的傍晚,我正在公园里散步,走到一棵大树下的时候,听到一位老爷爷在讲故事,我好奇的停了下来。话说一只猫和狗在树下决斗,有意思的是那只狗备战的时候,猫并没有上心的备战。战争一触即发,狗攻击了猫。

事实上,毕达哥拉斯定理不仅应用范围广,还体现在我们对它自由地想象延展。它不仅适用于建筑学物理学天文学等,事实上它几乎在所有领域和运用上都是适用的。我们熟悉的作为研究几何的三角形,其边角度量及其关系,就是从定理出发展开想象,遇见了经典的正余弦定理、三角函数性质等等,如果有兴趣,我们还可以从更多操作的动态变化过程中去想象就会得到一次次的惊喜,优秀想象作文1000字。例如,从熟悉的这个三角形(图1)开始展开想象,会发现一个个不易证明的不等式:

大家知道如果a>0,b>0 , c>0,则无理不等式显然成立。而它的几何模型如图(1):在ΔABC中,CD为AB上的高,且AD=a,BD=b,则,AB=a+b,因为AC+BC>AB,所以。如果把图1中的RTΔBCD沿CD翻折,使它成直二面角,如图2这样在空间四边形ABCD中仍可得到ΔABC,无疑地,它是命题“三数中,任意两数之和大于第三数”的几何模型。如果把RTΔBCD再继续翻转,使之与RTΔACD叠合,如图(3),仍得ΔABC。其中AB=a-b(设a>b),∵AC-BC<AB(其中a>b)是它所表示的无理不等式。如果每条边的赋值不同,图1中的ΔABC还是无理不等式:“若a>b、b>c 、c>0,则的几何模式。为此,我们只须令:AD=,BD=,CD=。则:AC= ,BC=

因为:

当且仅当∠ACB=时取等号,此时有:时取等号。

如果在图1中过C点作AB之平行线并在上面取一点C',想象作文一千字会飞的老鼠,使它与A、B两点等距离:如图(4),根据同底等高的三角形中,以等腰三角形的周长最短。无疑地,图(4)是无理不等式:的几何模式。其中,当且仅当a=b时取等号。

数学的魅力源自于想象,想象背后的实质是那火热的思考!思考带给你最重要的价值是什么?是对自由的体验,是独上高楼,望尽天涯路的惊喜,是人生中很难获得的精神财富之一,这或许就是数学的想象带给我们的无限魅力吧!

已发文章>>

我的理想作文1000字1: 作者: 种子 理想是石,敲出星星之火;理想是火,点燃生命的灯;理想是灯,照亮夜行的路;理想是路,引导我们走向黎明…… 每个人都有自己的人生理想,并且要为之拼搏;没有理想的人,必定是行尸走肉。

001 阅读《数学的故事》有感

002 我想和数学谈场恋爱

003 数学“化错”中的美

1、、、二十年后的我,已经是一位出色的科学家。那时,打开窗户,看看,蓝蓝的一片。在哪儿呢?原来我是坐在火箭上。想想,学校该放学了,我得赶快去接我那敬爱的老师,亲爱的同学们,一起飞向太空。来到熟悉的校园。

004 让数学思考成为数学课堂的主旋律

005 卢梭的“错”?

006 数学教学案例《找次品》

007 基于优化学生数学思维的高效课堂创建——以等腰三角形的判定一课为例

008 从特殊到一般,引导数学思维

009 数学文化融入家庭教育的研究

就是因为他们是用消极悲观的心态去看世界,这样,这世界在他们的心目中就会变得越来越坏,越来越不可收拾。据一份调查显示,大多数精神疾病患者,都是由于自寻烦恼,把很小的挫折和点滴的痛苦想象成了巨大的灾难,因而感到心理难以承受所致。

010 sin 震荡函数的图像分析

011 四阶幻方的“太极图”性质

012 无理数的定义和实数理论的建立

013 一个容易被忽视的问题——数学文化

015 中学数学德育渗透的方法与路径

016 《数学的力量》读后感

017 基于数学文化的单元统整教学设计——以“圆的认识与面积”教学为例

018 有助于数的理解的数字圈环

019 以折叠为例,探究生长型数学教学模式

020 我从事数学科普写作的经验与启示

有一天,一位外星人突发奇想:如果人类没了汽车会怎么样?于是搞了一个恶作剧,将世界上所有的汽车都吸附在地上,不能动弹。这时,一位公司的白领急急忙忙地走下楼,打开车门就要开,可发动了半天汽车还是纹丝不动。

021 在阅读中滋长智慧——读《教育智慧从哪里来》有感

022 学习数学史 做数学的使者

023 开数学文化之窗 启数学文化魅力——阅读《美丽的数学》有感

024 “文学独白”——数学教学因你而精彩

025 如何用多面体三等分正方体

026 HPM视角下《圆的周长》教学设计

027 被误解的“勾股定理”

028 好玩的数学

029 帮小青蛙设计一个井

030 万物的基础——数学——读《从一到无穷大》有感

031 读《孙子算经》鸡兔同笼问题有感

032 HPM视角下高中数学多样化作业的设计

033 攀越高峰的领路人——数学文化

034 我的好兄弟:数学

035 细嗅数学文化之香

036 藤蔓的喜悦

我的老家在一个绿树环抱的村子里。村里有一条清澈的小河,哼着快乐的小曲蜿蜒地奔向树林深处。每天清晨,我都伴着欢快的鸟鸣走出院子,扑鼻而来的一股清新的感觉,瞬间驱走了还残留的淡淡睡意。一缕缕柔和的晨光穿过树梢。

本文想象丰富,构思巧妙很有创意。篇一:小学作文:关于粉笔的作文关于粉笔的作文一支不起眼的小粉笔,却是载满知识的船只。《秦兵马俑》、《颐和园》、《猫》、《长城》……课本被一页页翻过,粉笔在一天天变短,消失。

037 物理力学中数学的影子

038 复数外传

我坐着时光机来到了1000年后,哇!3004年真是不同凡响。街道上到处是悬浮汽车,每个人都忙碌着。我走着走着,忽然看见一张海报。上面写着月球之旅。这可是个难得的好机会,此时不去,更待何时!我立刻报了名。

039 函数的历史和发展

040 数学文化与我

041 数学之趣

042 探索数学知识背后的秘密

043 数学文化和我的数学学习

044 古代算数几何形体——阳马与鳖臑

045 数学文化与我的数学学习

写梦想的优秀作文 1000字1:19世纪初,美国一座偏远的小镇里住着一位远近闻名的富商,富商有个19岁的儿子叫伯杰。一天晚餐后,伯杰欣赏着深秋美妙的月色。突然,他看见窗外的街灯下站着一个和他年龄相仿的青年。

046 我与数学文化

047 “形象”的数学

048 站在巨人的肩膀上学习数学

049 从数学文化和个人影响的角度剖析对数的历史

050 论数学文化

051 我与数学文化

052 正弦定理的源起与应用

053 数学文化融入初中数学教学的实践与思考

054 给数字爱好者的1个全新的0至9数字思考挑战及应用问题

055 并不需要的“承重墙”与数学课改中的问题 —— 兼与马立平博士商榷

056 奇妙的规律

057 生活中的“家常便饭”——数的表示方法

058 读《黄东坡智慧大讲堂——带你发现数学之美》有感

059 通识教育视角下初中数学思维培养从直观向抽象过渡的研究

060 读《古今数学思想》有感

061 为什么圆的面积的导数等于周长?球的的体积的导数等于其表面积?

062 《奇妙的数学文化》读后感

063 数学文化视角下《九宫图的奥秘》教学设计

064 关于毕达哥拉斯定理适用蒙特卡罗方法验证的探讨

065 遨游数学星空,体味数学奇妙

066 核心素养下的,数学文化中的美育渗透

067 探寻数学之奇,欣赏数学之美

068 框架思维——读《数学这样学就对了》有感

069 从肌肉记忆到《几何原本》第四公理

070 《数学大世界》读后感

071 除法才是四则运算的基础:兼与马立平博士商榷

072 从“海盗分金”到“囚徒困境”——博弈该如何进行?

073 “0”与“1”的辩证法和数学学习之路

074 感悟数学

075 我的好伙伴:数学

076 一则寓言故事带来的教学启发

077 神奇的数学 ——最大公因数、最小公倍数

078 怎样学好数学

079 “7”真是个神奇的数字

080 《一个定理的诞生:我与菲尔茨奖的一千个日夜》读后感

081 梦想中的职业,都与数学息息相关

082 哪⾥有数,哪⾥就有美⸺读《数学之美》有感

083 探索信息技术融入初中数学文化实践活动

084 秦九韶数学案——随机抽样统计推理的反问题

火星并不是很热,是一片大沙漠和石头。我在火星上塔了个小房子,开始了我的火星生活,我知道火星上每天都会有沙尘暴,我就把房子塔在四座大山中间,以免被沙尘暴卷走。我把第一年的时间用在让火星上有河流。

085 第四次数学危机

086 基于三阶魔方的STREAM教学设计

087 趣味家庭作业 引领学生学习

088 数学之道

089 了解微积分后的那些事……

090 不会?不,会

091 一个偶然的发现——完全数及其基因构造数列

092 在规矩方圆中求索——“圆的认识”的文化育人视界

093 欧拉公式的几何证明与意义

猜你喜欢